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We show numerically different stable localized structures including stationary holes, moving holes, breath-
ing holes, stationary and moving pulses in the one-dimensional subcritical complex Ginzburg–Landau equation
with periodic boundary conditions, and using two classes of initial conditions. The coexistence between
different types of stable solutions is summarized in a phase diagram. Stable breathing moving holes as well as
breathing nonmoving holes have not been described before for dissipative pattern-forming systems including
reaction-diffusion systems.
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The observation of localized structures in dissipative sys-
tems �1� in a number of fields has attracted growing atten-
tion. This field got a big boost by the experimental observa-
tion of localized propagating structures in a surface reaction
�2� and self-replicating spots in a bulk chemical reaction �3�.
The latter phenomenon has been discussed theoretically, in
particular, in the framework of reaction-diffusion systems
�4,5�. One has also observed oscillating localized states �“os-
cillons”� in granular media �6� and two-dimensional �2D�
localized structures in a laser with a saturable absorber �7�
following a theoretical prediction �8�.

To model such phenomena there have been two avenues
of approach. Either reaction-diffusion models are studied,
which were thought to be close to the autocatalytic chemical
reactions investigated experimentally �4,5,9–12�, or one in-
vestigates envelope equations �13,14�, which reflect the sym-
metry of the underlying problem. In the domain of the enve-
lope equations, the cubic complex Ginzburg–Landau �CGL�
equation is very popular and shows many interesting phe-
nomena including spatiotemporal chaos, but is not suitable to
describe stable localized solutions �15�. Thual and Fauve
showed �16� that a quintic complex Ginzburg–Landau equa-
tion with a destabilizing cubic term gives rise to stable local-
ized solutions. In the following this observation was gener-
alized to show that periodically and chaotically breathing
localized solutions �17�, as well as propagating fixed shape
localized solutions �18,19�, also stably exist for the quintic
CGL equation. The quintic CGL equation represents an im-
portant prototype equation, since it arises generically as an
envelope equation for a weakly inverted bifurcation associ-
ated with traveling waves. It also applies to real systems, in
particular, from nonlinear optics including ring fiber lasers
�compare Ref. �20� and references therein�.

Another large class of localized solutions familiar, for ex-
ample, from nonlinear optics, are hole solutions. They have
already been shown to exist for the cubic CGL equation
�21,22�, but are known to be unstable against small changes
in the equations �15� �structural instability�.

Motivated by recent work on the stable existence and
even coexistence of � and 2� holes for the same parameter
values in the equation for a simple reaction-diffusion system
�23� �compare Ref. �24� for a discussion of its relation to the
one-dimensional �1D� quintic CGL equation�, we are de-
scribing here numerical results on localized solutions and

five types of different holes for the 1D quintic CGL equation.
The five types of stable holes are: nonmoving � holes, non-
moving 2� holes, moving � holes �moving to the left or to
the right�, breathing moving holes �moving to the left or to
the right�, and breathing nonmoving holes. While traveling
breathing pulses have been reported for a 1D reaction-
diffusion system �25�, this type of solution has not yet been
found for the quintic CGL equation. We also discuss to what
extent there are regimes of stable coexistence of the various
types of stable pulse and hole solutions. Since these results
are obtained for a generic envelope equation, we expect that
such behavior is applicable to many types of systems �26�.

The starting point of our investigations is the subcritical
complex Ginzburg–Landau equation with periodic boundary
conditions

�tA = �A + ��r + i�i��A�2A + ��r + i�i��A�4A + �Dr + iDi��xxA ,

�1�

where A�x , t�=R�x , t�ei��x,t� is a complex field.
A numerical study of Eq. �1� has been carried out using

the following parameter values: �r=−�r=Dr=1, �i=0.2, �i
=0.15, and Di=−0.1 �27�. Different localized solutions arise
as a function of � and the initial conditions. We use two
classes of initial conditions: initial conditions in phase �ICP�
and initial conditions in antiphase �ICA� �see Fig. 1�. The
former is obtained by using Im A�x�=0 and localized
Re A�x� positive �or negative� and the latter by choosing
Im A�x�=0 and Re A�x� with a positive and a negative part
�compare Fig. 1�. We note that none of the results presented

FIG. 1. �Color online� Generic localized initial conditions: in
phase �ICP� shown as solid line and in antiphase �ICA� shown as
dashed line.
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below depends on the details of the shape of the initial con-
ditions; for example, they do not need to be anywhere near a
Gaussian in shape. As a numerical method we used fourth-
order Runge–Kutta finite differencing. We used typically 600
points with dx=0.4 �corresponding to a box length of L
=240� and a time step of dt=0.1. We were performing up to
106 iterations to check for long transients corresponding to a
total time of T=105. We also changed dx and dt to verify that
none of the results presented depends sensitively on the dis-
cretization used. We note that there is at maximum a small
shift in the values of � by at maximum 0.1% for which some
of the solutions with a narrow range of stable existence arise.

The results for ICP are the following: For ��−0.168 97
the system goes to zero. For −0.168 97���−0.1110 we
obtain stationary pulses �see Fig. 2�a��. In the narrow range

−0.1110���−0.1107 any ICP evolves to the homogeneous
solution. For −0.1107���−0.1045 any ICP gives origin to
a stationary 2� hole, whose modulus does not touch zero
�see Fig. 2�b��. In the very wide range −0.1045���
−0.088 04 any ICP reaches a stationary � hole, whose modu-
lus touches zero �see Fig. 2�c��. For −0.088 04���
−0.088 00 appear chaotic holes. In the vicinity of �
=−0.088 00 we find that period doubling can precede the
onset of chaotic behavior. In the range −0.088 00���
−0.087 93 any ICP evolves either to a right- �see Figs. 3�a�
and 3�b�� or left-moving breathing hole, which is asymmetric
and whose modulus is not reaching zero. For −0.087 93
���−0.087 67 the holes change to nonmoving breathing
holes and they are symmetric �see Figs. 3�c� and 3�d��. The
x-t plots clearly show that the depicted breathing holes act as

FIG. 2. The modulus R is shown for different
stable localized structures. �a� Stationary pulse
for �=−0.1200. �b� Stationary 2� hole for �=
−0.1080. �c� Stationary � hole for �=−0.1080.
�d� Right-moving pulse for �=−0.1136. �e�
Right-moving hole for �=−0.1133.

FIG. 3. �Color online� The modulus R and
space-time plots for the modulus of breathing
stable localized structures. �a� and �b� Breathing
right-moving hole for �=−0.087 95. �c� and �d�
Breathing nonmoving hole for �=−0.087 80. In
the x-t plots �b� and �d� the time shown on the
ordinate is T=103 corresponding to 104 iterations.
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a sink of traveling waves in both cases. For ��−0.087 67
the system evolves to the homogeneous solution.

There is no coexistence between chaotic, moving breath-
ing, and nonmoving breathing holes.

The results for ICA are the following: For ��
−0.168 97 the systems goes to zero. For −0.168 97��
�−0.113 64 we obtain stationary pulses. In the narrow range
−0.113 64���−0.113 47 any ICA evolves either to a right-
�see Fig. 2�d�� or a left-moving pulse, which is asymmetric
and has fixed shape. For −0.113 47���−0.113 18 appear
either right- �see Fig. 2�e�� or left-moving holes, which are
asymmetric � holes and whose modulus reaches zero. For
−0.113 18���−0.1118 the system evolves to the homoge-
neous solution. In the very narrow range −0.1118���
−0.1110 appear stationary 2� holes. In the very wide range
−0.1110���0 any ICA reaches a stationary � hole. We
have checked by varying the system size, that even solutions
which exist only over a narrow range of � persist in their
stable existence. Only the precise location of the stable inter-
val on the � axis is shifted by a very small amount.

We remark that the homogeneous solutions near pulses
�ICP or ICA� have a wave vector different from zero but the
homogeneous solutions found for ICP near breathing holes
have a vanishing wave vector. The humps observed in the
stationary and moving holes correspond to sources of travel-
ing waves. We point out the fact that if we start with more
complicated initial conditions �noise, for instance� it is not
difficult to reach asymptotically stationary pulses, 2� holes,
and � holes. The other localized structures were not ob-
served for these more complex initial conditions.

As we have seen, the two sequences for ICPs and ICAs
are rather different. We would like to comment on these dif-
ferences as follows. Moving pulses are related to moving �
holes in the following sense. If we observe the wave vector
of moving pulses they have a singularity in the phase but in
the part where the amplitude is practically zero. Therefore
one does not notice this singularity immediately. If we start
at �=−0.113 64 with a moving pulse and we increase �, we
jump to moving � holes at �=−0.113 47. We obtain an
asymmetric hole. But now the singularity of the phase is
relevant and we obtain a moving � hole. This gives a reason
why moving pulses and moving � holes appear after each
other as a function of �. If we increase � we obtain homo-
geneous solutions. If we reduce �, at �=−0.113 18 there is
first a moving � hole, then we jump to moving pulses at �
=−0.113 51, and at �=−0.113 64 to stationary pulses. We
note that there is a small hysteresis in the transition from
moving pulses to moving holes and vice versa.

To study the coexistence of stationary pulses, 2� holes,
and � holes, we start near �=�1=−0.168 97 with a station-
ary pulse. By increasing � the system remains in such a
solution until �=�4=−0.1110. If � is increased further, a
spatially homogeneous state results. When � is decreased,
the selected solution is always a stationary pulse until reach-
ing �=�1. Now we start near �=�5=−0.1045 with a 2�
hole. By decreasing � the system remains in a stationary 2�
hole until reaching �=�3=−0.1126. Below this point the
system jumps to a stationary pulse. If we start with a 2� hole
at �=�3 and we increase �, the selected solution is a 2�
hole until �=�5. Above this point the system jumps to a �

hole. By increasing � the system remains in a � hole until
reaching �=0. By decreasing � the selected solution is al-
ways a � hole until we reach �=�2=−0.129. Below this
point the system jumps to a stationary pulse. Starting with a
� hole at �=�2 and increasing � we remain in a � hole until
�=0. A phase diagram of stationary pulses and stationary 2�
and � holes is shown in Fig. 4. From the phase diagram it is
possible to see that there is a narrow range of �, namely,
�3����4, where stationary pulses, 2� holes, and � holes
coexist. It is a remarkable fact that with a single localized
initial condition �ICP or ICA� and changing � we can jump
from 2� to � holes and from there to stationary pulses.

Finally, we briefly show an analytic approach for 2�

FIG. 4. Phase diagram of stationary pulses and holes. Pulses and
holes coexist for �3����4. �1=−0.168 97, �2=−0.129, �3=
−0.1126, �4=−0.1110, �5=−0.1045. The � axis is not to scale;
regions of coexistence have been magnified.

FIG. 5. �Color online� Values of the parameters are: �=−0.06,
�r=1.125, �i=0.48, �r=−0.859 375, and Dr=1. �a� The intersection
between the curves f�p ,Rm�=0 �continuous line� and g�p ,Rm�=0
�dashed line� predicts one unstable �solid circle� and one stable hole
�open circle�. �b� Modulus of the 2� hole. The thick line stands for
the analytical prediction and the thin line for a direct numerical
simulation.
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holes which enables us to understand their limited existence
range as shown in Fig. 4. This approach has been recently
introduced only to study pulses in the one-dimensional quin-
tic CGL equation �28�. For the sake of simplicity we consider
Eq. �1� with �i=Di=0. The complex field A�x , t� is supposed
to be A�x , t�=R�x�exp�i��t+	�x���. The analytic strategy to
approximately calculate �, R�x�, and 	�x� consists of consid-
ering that 	x�x� is constant �−p for the left side, +p for the
right side� in almost all the domain �outside the core� except
in a narrow range around the center of the hole �core�, where
	x�x� is considered to be a cubic function. This assumption
has been inspired by numerical simulations. Replacing
the above-mentioned ansatz for A�x , t� in Eq. �1� and outside
the core ��x��x*�, where x=x* corresponds to the local
maximum of the cubic function, we obtain R0

=�−�r−��r
2−4�r��−Drp

2� /2�r �the asymptotic value of
the modulus of the stationary hole�, �=�iR0

2 �the frequency�,
and an expression for R�x�=R0 /�1+exp�−� /Drp��x�−x0��,
where x0 is a constant to be determined, which is related to
the translational symmetry of Eq. �1�. Inside the core ��x�
�x*� we assume that R�x�=Rm+
x2+�x4 and 	x�x�=�x
−�x3, where Rm is the height of the hole at x=0. Replacing
this ansatz in Eq. �1� we can obtain 
, �, �, and � in terms of
Rm, p, and the parameters of the quintic CGL equation. Im-
posing continuity of the amplitude R�x� at x=x* we get x0.
The continuity of the first derivative of the amplitude R�x� at
x=x* leads us to a first relation between Rm and p: f�p ,Rm�
=0. Using the consistency relation given in Eq. �6� in Ref.
�16� we obtain a second relation between Rm and p:
g�p ,Rm�=0. Thus we have constructed approximate expres-
sions for R�x� and 	�x� in all the domain in terms of two

unknown parameters, namely, Rm and p. The existence of
stationary 2� holes is related to the intersection between the
curves f�p ,Rm�=0 and g�p ,Rm�=0. In Fig. 5�a� the intersec-
tion between these curves predicts one unstable and one
stable hole because the appearance of 2� holes is related to a
saddle-node bifurcation. For this case we plot in Fig. 5�b� the
analytical predicted modulus R�x� with the above-described
method for the stable 2� hole �thick line�. The result is in
good agreement with a direct numerical simulation of Eq. �1�
�thin line� �compare Ref. �29� for further details�.

In conclusion, we have shown in this Communication that
there are at least five different types of hole solutions for the
quintic CGL equation: nonmoving � holes, nonmoving 2�
holes, moving � holes, breathing moving holes, and breath-
ing nonmoving holes. Note that both types of moving holes
move either to the left or to the right to preserve the overall
symmetry of the quintic CGL equation. Moreover, we have
demonstrated that three different types of stationary localized
solutions, namely pulses, �, and 2� holes, can arise for a
fixed set of parameter values in the equation. This behavior
was known so far only for a reaction-diffusion model �23�.
Now that it has been shown to arise for a prototype envelope
equation, we can expect the experimental observation of
such a behavior with a much higher probability. Using a
simple analytical method we pointed out the fact that 2�
holes appear through a saddle-node bifurcation.

The simulation software DIMX developed by P. Coullet,
M. Monticelli, and collaborators at the laboratory INLN in
France has been used for all the numerical simulations. O.D.
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